Images by Date
Images by Category
Solar System
Stars
Exoplanets
White Dwarfs
Supernovas
Neutron Stars
Black Holes
Milky Way Galaxy
Normal Galaxies
Quasars
Galaxy Clusters
Cosmology/Deep Field
Miscellaneous
Images by Interest
Space Scoop for Kids
Multiwavelength
Sky Map
Constellations
Photo Blog
Top Rated Images
Image Handouts
Desktops
Fits Files
Visual descriptions
Image Tutorials
Photo Album Tutorial
False Color
Cosmic Distance
Look-Back Time
Scale & Distance
Angular Measurement
Images & Processing
AVM/Metadata
Image Use Policy
Web Shortcuts
Chandra Blog
RSS Feed
Image Use Policy
Questions & Answers
Glossary of Terms
G292.0+1.8: Supernova Explosions Stay In Shape
G292.0+1.8
Visual Description:

  • A new study of supernova remnants allowed scientists to categorize the explosion that created them based on their shape

  • Supernovas that come from thermonuclear explosion on white dwarfs (known as Type Ia) produce very symmetric remnants

  • Another type, created when a very massive star collapses, results in more asymmetrically shaped remnants

These two supernova remnants are part of a new study from NASA's Chandra X-ray Observatory that shows how the shape of the remnant is connected to the way the progenitor star exploded. In this study, a team of researchers examined the shapes of 17 supernova remnants in both the Milky Way galaxy and a neighbor galaxy, the Large Magellanic Cloud.

The results revealed that one category of supernova explosion, known as "Type Ia," generated a very symmetric, circular remnant. This type of supernova is thought to be caused by a thermonuclear explosion of a white dwarf, and is often used by astronomers as a "standard candle" for measuring cosmic distances. The image in the right panel, the so-called Kepler supernova remnant, represents this type of supernova.

On the other hand, remnants tied to the "core collapse" family of supernova explosions were distinctly more asymmetric, which is seen in the morphology of the G292.0+1.8 remnant (left). The research team measured asymmetry in two ways: how spherical or elliptical the supernova remnant was and how much one side of the remnant mirrors its opposite side. In G292, the asymmetry is subtle but can be seen in elongated features defined by the brightest emission (colored white).

Out of the 17 supernova remnants sampled, ten were independently classified as the core-collapse variety, while the remaining seven of them were classified as Type Ia. One of these, a remnant known as SNR 0548-70.4, was a bit of an "oddball". This one was considered a Type Ia based on its chemical abundances, but has the asymmetry of a core-collapse remnant.

Visual Description:

Two images of the supernova remnants G292 0 + 1 8 and Kepler are shown side by side here. The Chandra X-ray Observatory image of G292.0+1.8 depicts the nebula as a bright, glowing object that resembles a jellyfish swimming on its side. The colors of the image are predominantly white, yellow, red and blue, with some green and purple hues present, a rainbow of hues. This image shows a rapidly expanding shell of gas that is 36 light years across and contains large amounts of elements such as oxygen, neon, magnesium, silicon and sulfur. On the right, the X-ray image of Kepler's Supernova Remnant is dominated by shades of pale purple-pink, and electric blue, with a hint of pale gold and green. The structure of Kepler's Supernova Remnant consists of an irregularly shaped nebula, almost like a knot. In the Chandra Kepler image, pink tones represent low-energy X-rays and show material around the star -- dominated by oxygen -- that has been heated up by a blast wave from the star's explosion. The pale gold color shows slightly higher energy X-rays, mostly iron formed in the supernova, while green (medium-energy X-rays) shows other elements from the exploded star. The blue color represents the highest energy X-rays and shows a shock front generated by the explosion.

 

Fast Facts for G292.0+1.8:
Credit  NASA/CXC/UCSC/L. Lopez et al.
Release Date  December 17, 2009
Scale  11.5 itsacross.
Category  Supernovas & Supernova Remnants
Coordinates (J2000)  RA 11h 24m 36.00s | Dec -59° 16' 00.00"
Constellation  Centaurus
Observation Date  6 observations between September - October 2006
Observation Time  144 hours
Obs. ID  6677-6680, 8221, and 8447
Instrument  ACIS
References Lopez, L. et al, 2009 706 L106-L109; Park, S. et al, 2007, ApJ, 670 L121-L124
Color Code  Energy: Red (low energy); Orange (medium-low energy); Green (medium energy); Blue (high energy)
UV
Distance Estimate  About 20,000 light years
distance arrow
Fast Facts for Kepler's Supernova Remnant:
Credit  NASA/CXC/UCSC/L. Lopez et al.
Release Date  December 17, 2009
Scale  5 itsacross.
Category  Supernovas & Supernova Remnants
Coordinates (J2000)  RA 17h 30m 40.80s | Dec -21° 29' 11.00"
Constellation  Ophiuchus
Observation Date  6 observations between April - August 2006
Observation Time  208 hours
Obs. ID  6714-18, 7366
Instrument  ACIS
Also Known As SN 1604, G004.5+06.8, V 843 Ophiuchi
References Lopez, L. et al, 2009 706 L106-L109; Park, S. et al, 2007, ApJ, 670 L121-L124
Color Code  Energy: Red (low energy);Yellow/Green (medium energy); Blue (high energy)
UV
Distance Estimate  About 13,000 light years
distance arrow
Rate This Image

  • Currently 3.78/5
Rating: 3.8/5
(633 votes cast)
Download & Share

Desktops

1024x768 - 484.5 kb
1280x1024 - 666.9 kb
1680x1050 - 636.5 kb
More Information
Press Room: G292.0+1.8
Blog: G292.0+1.8
More Images
Chandra X-ray Image
of SNR 0548-70.4
Jpg, Tif, PS
Illustration

More Images
Animation & Video
Animation of Supernova Explosion
Animation

More Animations
More Releases
Related Images
Crab Nebula
Crab Nebula
(23 Nov 09)

Cassiopeia A
Cassiopeia A
(04 Nov 09)

3C58
3c58
(14 Dec 04)

Related Information
Related Podcast
Top Rated Images
RACS J0320-35
  • Currently 4.70/5
MSH 15-52
  • Currently 4.12/5
Data Sonification
  • Currently 4.00/5



FaceBookTwitterYouTubeFlickr