Images by Date
Images by Category
Solar System
Stars
Exoplanets
White Dwarfs
Supernovas
Neutron Stars
Black Holes
Milky Way Galaxy
Normal Galaxies
Quasars
Galaxy Clusters
Cosmology/Deep Field
Miscellaneous
Images by Interest
Space Scoop for Kids
4K JPG
Multiwavelength
Sky Map
Constellations
Photo Blog
Top Rated Images
Image Handouts
Desktops
Fits Files
Image Tutorials
Photo Album Tutorial
False Color
Cosmic Distance
Look-Back Time
Scale & Distance
Angular Measurement
Images & Processing
AVM/Metadata
Image Use Policy
Web Shortcuts
Chandra Blog
RSS Feed
Chronicle
Email Newsletter
News & Noteworthy
Image Use Policy
Questions & Answers
Glossary of Terms
Download Guide
Get Adobe Reader
3 Quasars Animations
Click for low-resolution animation
Tour of 3 Quasars
Quicktime MPEG With closed-captions (at YouTube)

A group of unusual giant black holes may be consuming excessive amounts of matter, according to a new study using NASA's Chandra X-ray Observatory. This finding may help astronomers understand how the largest black holes were able to grow so rapidly in the early Universe.

Astronomers have known for some time that supermassive black holes - with masses ranging from millions to billions of times the mass of the Sun and residing at the centers of galaxies - can gobble up huge quantities of gas and dust that have fallen into their gravitational pull. As the matter falls towards these black holes, it glows with such brilliance that they can be seen billions of light years away. Astronomers call these extremely ravenous black holes "quasars."

This new result suggests that some quasars are even more adept at devouring material than previously thought, about five to ten times the rate of typical quasars. A team of astronomers examined data from Chandra for 51 quasars that are located at a distance between about 5 billion and 11.5 billion light years from Earth. Based on their findings, the researchers think some of these quasars contain black holes that are surrounded by a thick, donut-shaped disk of material. This torus would block much of the light - including X-rays and ultraviolet light -- that would otherwise be observed by Chandra and other telescopes. The important implication for these thick-disk quasars is that they may be harboring black holes that are growing an extraordinarily rapid rate.
[Runtime: 01:53]

(Credit: NASA/CXC/A. Hobart)



Return to 3 Quasars (April 30, 2015)